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Binary optimization



Binary optimization

Binary optimization is a classical combinatorial optimization problem. It aims to minimize
a real-valued function f , where the decision variables xi can only take the values ±1.
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Quantum binary optimization at scale

Birdal et al. CVPR 2021

Benkner et al. ICCV 2021

Bhatia et al. CVPR 2023

Golyanik et al. CVPR 2020

Meli et al. CVPR 2022
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Quadratic unconstrained binary optimization (QUBO/Ising)

In particular, we are interested in solving QUBO problems of the form

argmin
x∈{−1,1}n

f (x),

f (x) :=
n∑

i=1

Ciixi +
∑

1≤i<j≤n

Cijxixj ,

Cii , Cij ∈ R.
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Goal

Design efficient QUBO solvers, leverage quantum computing power.
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QUBO - Hamiltonian formulation

Quantum computers use qubits (vectors)
and manipulate them with matrices.

Replace binary variables by vectors.

Find a matrix to describe function value.

Hamiltonian formulation: Consider f (x) =
∑n

i=1 Ciixi +
∑

1≤i<j≤n Cijxixj .

n
=
1

Defining Z :=
(
1 0
0 −1

)
, |0⟩ :=

(
1
0

)
, |1⟩ :=

(
0
1

)
⇒

{
⟨0|Z|0⟩ = 1,

⟨1|Z|1⟩ = −1.

M
o
re

va
ri
a
b
le
s For

Zi = I⊗ · · · ⊗ I⊗ Z︸︷︷︸
pos.i

⊗I⊗ · · · ⊗ I, and |q⟩ =
⊗n

i=1 |qi ⟩ , |qi ⟩ ∈ {|0⟩ , |1⟩},

it holds with x such that xi = ⟨qi |Z|qi ⟩:

⟨q|C|q⟩ = f (x) where C :=
n∑

i=1

CiiZi +
∑

1≤i<j≤n

CijZiZj .
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Quadratic unconstrained binary optimization (QUBO/Ising)

Goal

Solve
argmin
q∈{0,1}n

⟨q|C|q⟩ ,

for

C :=
n∑

i=1

CiiZi +
∑

1≤i<j≤n

CijZiZj ,

given Cii , Cij ∈ R, with Zk being the Pauli-Z operator acting on qubit k , k = 1, . . . , n.

Classical challenges

NP-Hard if non sub-modular

Combinatorial, not differentiable

Quantum methods

Quantum annealing (D-Wave)

Gate-based solvers (QAOA/VQE/Ours)
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Quantum QUBO solvers



Adiabatic vs. gate-based QC

At any time t ∈ [0,T ], the evolution of the system’s state vector |ψ(t)⟩ obeys
Schrödinger’s equation

iℏ
d

dt
|ψ(t)⟩ = H(t) |ψ(t)⟩ ,

where H is a Hermitian operator known as the system-driven Hamiltonian.

Two computation paradigms

iℏ d
dt |ψ(t)⟩ = H(t) |ψ(t)⟩

H(t) =
(
1− t

T

)
HI + tHC |ψ(t)⟩ = U(t) |ψ(0)⟩

Adiabatic quantum computing
HI : initial Hamiltonian

HC : problem Hamiltonian

Gate-based quantum computing
U(t): unitary operator
U(t): depends only on t
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Adiabatic vs. gate-based QUBO solvers

H(t) =
(
1− t

T

)
HI + tHC

some Hamiltonian we

know the groundstate of.

↑ ↖ ∑n
i=1 CiiZi +

∑
1≤i<j≤n CijZiZj

Image sources: https: // www. vesselproject. io/ life-through-quantum-annealing
https: // medium. com/ @quantum_ wa/ quantum-annealing-cdb129e96601

Zhou et al. QAOA: Performance, mechanism, and implementation on near-term devices. Phys. Rev. X, 2020.
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Gate-based quantum computing

Gate name Matrix form Circuit Notation

Pauli-X X =
(
0 1
1 0

)
X X |0⟩ = |1⟩

Hadamard H = 1√
2

(
1 1
1 −1

)
H H |0⟩ = 1√

2
(|0⟩+ |1⟩)

Multi-qubit gate X⊗H = 1√
2

0 0 1 1
0 0 1 −1
1 1 0 0
1 −1 0 0

 X

H
X⊗H |00⟩ = 1√

2
(|10⟩+ |11⟩)

Controlled-X
on |q0q1⟩

I⊗ Xq0 =

1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

 I⊗ Xq0 |00⟩ = |00⟩
I⊗ Xq0 |10⟩ = |11⟩

Rotation Ry Ry (2θ) =

(
cos(θ) − sin(θ)
sin(θ) cos(θ)

)
Ry (θ) Ry (2θ) |0⟩ = cos(θ) |0⟩ − sin(θ) |1⟩

Gate-based QC: Nielsen and Chuang. Quantum Computation and Quantum Information. Cambridge University Press, 2010.
Sutor. Dancing with Qubits: How quantum computing works and how it can change the world. Packt Publishing Ltd, 2019.
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Variational quantum computing (VQC)

|0⟩ Rx Ry

|ψ(θ)⟩
|0⟩ Rx Ry

|0⟩ Rx Ry

|0⟩ Rx Ry

θnewUpdate parameters of the variational circuit

QPU
Estimates objective function

CPU
Optimization algorithm

VQC: Cerez et al. Variational quantum algorithms. Nature, 2021.
Peruzzo et al. A variational eigenvalue solver on a photonic quantum processor. Nature, 2014.
Wang et al. Variational quantum singular value decomposition. Quantum, 2021.
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VQC for QUBO

Recall: We want to solve

argmin
q∈{0,1}n

⟨q|C|q⟩ ,

for
C :=

n∑
i=1

CiiZi +
∑

1≤i<j≤n

CijZiZj .

|q⟩ =



...
0
1
0
...

 |ψ(θ)⟩ =



...
αk−1(θ)
αk(θ)
αk+1(θ)

...



Idea

Approximate |q⟩ =
⊗n

i=1 |qi ⟩ , qi ∈ {0, 1} as |ψ(θ)⟩ =
∑

q αq(θ) |q⟩ and solve

argmin
θ∈Θ

L(θ), L(θ) := ⟨ψ(θ)|C|ψ(θ)⟩ .
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Objective lanscapes of some VQCs for QUBOs
n
=
3

n
=
9

Image source: Baerligea et al. Solving Combinatorial Optimization Problems with a Block Encoding Quantum Optimizer. arXiv, 2024.
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A block encoding framework
of QUBO problems



Block encoding

Idea

Approximate |q⟩ =
⊗n

i=1 |qi ⟩ , qi ∈ {0, 1} as |ψ(θ)⟩ =
∑

q αq(θ) |q⟩ and solve

argmin
θ∈Θ

L(θ), L(θ) := ⟨ψ(θ)|C|ψ(θ)⟩ .

Block encoding: Embed Hamiltonian C into a unitary operator U and solve

argmin
θ∈Θ

L(θ), L(θ) := ⟨0, ψ(θ)|U|0, ψ(θ)⟩ .

U acts directly on as a quantum gate.

U encodes the cost of each basis state in its amplitude.

No need to sample and store |ψ(θ)⟩ to evaluate L(θ).

Block Encoding: Kuete Meli et al. A universal quantum algorithm for weighted maximum cut and Ising problems. Quantum Inf Process, 2023.
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Block encoding: Overview

Ancilla qubit |0⟩a H H ⟨U⟩

Cost qubit |0⟩c
U(C, a, b) U |0⟩ |ψ(θ)⟩

Working qubits |0⟩q Ry (θ)
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Block encoding: Derivations

Ancilla qubit |0⟩a H H ⟨U⟩

Cost qubit |0⟩c
U(C, a, b) U |0⟩ |ψ(θ)⟩

Working qubits |0⟩q Ry (θ)

Hadamard Test

⟨U⟩ = p(0)− p(1)

=
∑
q

|αq(θ)|2 cos(⟨q|Ĉ|q⟩))

= L(θ)
Embed C into a (21+n)× (21+n) unitary operator

U :=
∑
q

U2×2(q)⊗ |q⟩ ⟨q|,

U2×2(q) :=

(
cos(⟨q|Ĉ|q⟩) − sin(⟨q|Ĉ|q⟩)
sin(⟨q|Ĉ|q⟩) cos(⟨q|Ĉ|q⟩)

)
, Ĉ := aC+ bI, a, b ∈ R.

Choose a, b so that (aC+ b) ∈ [0, π]2
n
, where cos ensures preserving order!
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Block encoding: Circuit implementation

Using that

⟨q|Ĉ|q⟩ = a ⟨q|C|q⟩+ b, ⟨q|C|q⟩ =
n∑

i=1

(−1)qiCii +
∑

1≤i<j≤n

(−1)qi+qjCij ,

we can implement U2×2(q) as

U2×2(q) = Ry (⟨q|Ĉ|q⟩) =
n∏

i=1

Xqi · Ry (2aCii ) · Xqi ·∏
1≤i<j≤n

Xqi+qj · Ry (2aCij) · Xqi+qj · Ry (2b).

Quadratic terms Unary terms

Cost qubit
|ψ̂⟩c = Ry (2b) |0⟩

| ψ̂ ⟩c Ry (2aCij) Ry (2aCii )

Working qubits
| · ⟩qi
| · ⟩qj
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Block encoding: Hadamard test

Consider the Hadamard test circuit and define operators P± :=
1

2
(I±U).

|ψout⟩

|0⟩ H H

|ψin⟩ U

Measurement with operators P0 = |0⟩ ⟨0| ⊗ I and P1 = |1⟩ ⟨1| ⊗ I yields

p(0) =
〈
ψin

∣∣∣P†
+P+

∣∣∣ψin

〉
and p(1) =

〈
ψin

∣∣∣P†
−P−

∣∣∣ψin

〉
,

so that it holds Re (⟨ψin |U |ψin⟩) = p(0)− p(1).

In our application

L(θ) = ⟨ψin |U |ψin⟩ = ⟨0, ψ(θ) |U | 0, ψ(θ)⟩ = ⟨ψ(θ)| cos(Ĉ)|ψ(θ)⟩ ∈ R.
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Block encoding: Optimization

In an iterative process, we solve

argmin
θ∈Θ

L(θ), L(θ) := ⟨0, ψ(θ)|U|0, ψ(θ)⟩ ,

where we evaluate L(θ) with Hadamard test.
Optimization with normalized gradient descent and decreasing step size:

θ(k+1) = θ(k) − αk ·
∇θL(θ(k))

∥∇θL(θ(k))∥22
.

Parameter shift rule [Mitara et al. ‘2018]

∂

∂θi
L(θ) = 1

2

(
L
(
θ +

π

2
ei

)
− L

(
θ − π

2
ei

))
.
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Block encoding: Decoding

Once optimal parameter vector θ⋆ is found:

Prepare and measure ansatz

|0⟩q Ry (θ
⋆) |ψ(θ⋆)⟩q

Measure and get count histogram

Counts

Select solution (without loss of generality)

|ψ(θ⋆)⟩ = α0 |0⟩+ . . .+ αq⋆ |q⋆⟩+ . . .+ αmax |qmax⟩+ . . .+ α2n−1 |2n − 1⟩

|ψ⋆⟩ = |qmax⟩
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Results on Maxcut
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Kuete Meli, Mannel, and Lellmann. A universal quantum algorithm for weighted maximum cut and Ising problems. Springer, 2023.
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Results on full QUBOs
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Kuete Meli, Mannel, and Lellmann. A universal quantum algorithm for weighted maximum cut and Ising problems. Springer, 2023.
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Take-home message

1. QUBOs can be solved by adiabatic quantum computing:

argmin
x∈{−1,1}n

f (x), f (x) :=
n∑

i=1

Ciixi +
∑

1≤i<j≤n

Cijxixj .

2. Gate-based quantum computing allows flexibility:
▶ Allows variational forms as

argmin
θ∈Θ

L(θ), L(θ) := ⟨ψ(θ)|C|ψ(θ)⟩ .

▶ Gradient computable via parameter shift rule.

|0⟩ Rx Ry

|ψ(θ)⟩
|0⟩ Rx Ry

|0⟩ Rx Ry

|0⟩ Rx Ry

natacha.kuetemeli@uni-siegen.de

Thank You!
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